Bilinear expansion of Schur functions in Schur Q-functions: A fermionic approach

نویسندگان

چکیده

An identity is derived expressing Schur functions as sums over products of pairs $Q$-functions, generalizing previously known special cases. This shown to follow from their representations vacuum expectation values (VEV's) either charged or neutral fermionic creation and annihilation operators, Wick's theorem a factorization for VEV's two mutually anticommuting sets operators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolation Analogues of Schur Q-functions

We introduce interpolation analogues of Schur Q-functions — the multiparameter Schur Q-functions. We obtain for them several results: a combinatorial formula, generating functions for one-row and two-rows functions, vanishing and characterization properties, a Pieri-type formula, a Nimmo-type formula (a relation of two Pfaffians), a Giambelli-Schur-type Pfaffian formula, a determinantal formula...

متن کامل

Pfaffians and Determinants for Schur Q-Functions

Schur Q-functions were originally introduced by Schur in relation to projective representations of the symmetric group and they can be defined combinatorially in terms of shifted tableaux. In this paper we describe planar decompositions of shifted tableaux into strips and use the shapes of these strips to generate pfaffi.ans and determinants that are equal to Schur Q-functions. As special cases...

متن کامل

Schur Functions

Editorial comments. The Schur functions sλ are a special basis for the algebra of symmetric functions Λ. They are also intimately connected with representations of the symmetric and general linear groups. In what follows we will give two alternative definitions of these functions, show how they are related to other symmetric function bases, explicitly describe their connection with representati...

متن کامل

Products of Schur and Factorial Schur Functions

The product of any finite number of Schur and factorial Schur functions can be expanded as a Z[y]-linear combination of Schur functions. We give a rule for computing the coefficients in such an expansion which generalizes the classical Littlewood-Richardson rule.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2021

ISSN: ['2330-1511']

DOI: https://doi.org/10.1090/proc/15529